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Attention alters three key properties of population neural activity – firing rate,
rate variability, and shared variability between neurons. All three properties are
well explained by a single canonical computation – normalization – that acts
across hierarchically integrated brain systems. Combining data from rodents
and nonhuman primates, we argue that cortical cholinergic modulation origi-
nating from the basal forebrain closely mimics the effects of directed attention
on these three properties of population neural activity. Cholinergic modulation
of the cortical microcircuit underlying normalization may represent a key bio-
logical basis for the rapid and flexible changes in population neuronal coding
that are required by directed attention.

The Noise-Control Systems of the Brain
Neurons are noisy. Even to successive presentations of the same stimuli, the responses of
neurons will vary. Researchers typically discard this variability by averaging the responses of
neurons over many trials. However, our brains do not have this luxury. From onemoment to the
next, wemake sense of our environments in real time. This is particularly relevant to attention, in
which a behaviorally relevant stimulus is prioritized over multiple different competing stimuli. If
the neuronal responses to stimuli vary unpredictably, how does attention compensate for this
uncertainty? In this review we draw on several lines of research in non-human animals, which,
collectively, are starting to zero in on the core computations and neurobiological basis of the
noise-control systems of the brain and their role in attention.

In the sensory cortex, neuronal populations are organized according to maps of selectivity for
different stimulus features. Because neuronal populations with this functional architecture are
inherently noisy, some component of their responses to stimuli will not be informative. We begin
by discussing monkey electrophysiological work indicating that attention alters three popula-
tion neuronal response patterns – firing rate, rate variability, and correlated variability – to
enhance particular stimuli while compensating for noise. We focus first on the visual cortex,
where these three patterns are currently best characterized, and discuss how attention-driven
changes optimize the amount of information carried in the population neural code. We then
discuss the emerging view that these neural signatures of attention are not coincidental, and
instead reflect modulation of a single computation: normalization. Moreover, because normali-
zation is likely to be a canonical computation – emerging in any cortical population where
competitive interactions must overcome noise – we argue that attention likely utilizes normali-
zation at multiple stages of the cortical hierarchy beyond the visual cortex, up to and including
the highest levels of association cortex.

This raises a core question: what brain system is capable of rapidly and reversibly modulating
normalization in local neural populations, at multiple stages of cortical processing? In the second
part of the reviewwediscuss cutting-edge optogenetics andbiosensor research –predominantly
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Glossary
Acetylcholine (ACh): a
neurochemical released by
cholinergic neurons that can act both
as a neuromodulator (slow and
diffuse modulation affecting many
neurons) and a neurotransmitter (fast
and localized transmission of signals
across the synapse of individual
neurons).
Basal forebrain: a small collection
of nuclei situated in front of and
below the striatum, which contain
virtually all the cortically projecting
cholinergic neurons of the brain.
Cholinergic neuron: a neuron that
manufactures, transports, and
releases ACh.
Divisive normalization: a type of
computation in which the measured
estimate of the excitatory response
of a neuron to a stimulus is divided
by the sum of its own excitatory
response and those of nearby
neurons.
Fano factor: the trial-to-trial variance
in the spike-count of a neuron
divided by its spike-count mean.
Linear classifier: a means of
statistical classification used to
determine which class or group a
value belongs to based on its
characteristics. In electrophysiology,
we might determine which condition
(e.g., attended versus unattended)
the response pattern of a neuron
belongs to based on firing rate.
Noise correlation: a measure of the
degree to which trial-to-trial variance
in spike count is shared by a pair of
neurons.
Signal correlation: a measure of
the degree to which the mean
responses to different stimuli are
shared by a pair of neurons.
in rodent models –which has provided strong evidence that acetylcholine (ACh; see Glossary)
closely mimics the effects of directed attention on normalization. Specifically, we discuss work
showing that the release of ACh onto specific cortical cells – via stimulation of cholinergic
neurons of the basal forebrain system – rapidly alters the firing rate, rate variability, and
correlated variability of population neural responses. As with experimental manipulations of
directedattention, this cholinergically driven cortical circuit optimizes information in thepopulation
neural code.Wethendiscusscomplementaryevidenceshowing that thebasal forebrainsystem is
itself ‘wired’ to target multiple levels of the cortical hierarchy – and thus could constitute a unified
neural system for distributed attention. Finally, we discuss future directions motivated by this
theoretical framework.

The Noisy Functional Architecture of Neuronal Populations
In the sensory cortex, neurons are organized according to feature selectivity maps, such that
each neuron will respond maximally only to specific stimulus features – its preferred feature
space. In the visual cortex, this feature space could include a particular orientation or color [1–
4], or location in the visual field [5–8], or usually both. In the auditory cortex, a neuron might
prefer a particular frequency [9]; in the somatosensory cortex, a specific texture [10]. However,
what a scientist can derive psychophysically about the preferred feature of a neuron is an
oversimplification of its actual preferred feature space. Even primary visual neurons usually do
not prefer values along a single feature dimension, but prefer conjunctions of features such as
orientation, spatial frequency, and direction of motion [11].

If each neuron of the sensory cortex exhibits a preference for a unique feature space, this will
give rise to immensely diverse neuronal populations. This diversity equips the brain with the
ability to represent the features of virtually any stimulus. However, it also creates a problem
because any stimulus will activate many different neurons, with different preferred feature
spaces. If the responses of neurons contained little to no stimulus-independent noise, or if the
noise for a neuron was independent of its neighbors, the average response over a sufficiently
large population would provide reliable (and discriminable) estimates of the responses of the
most-informative neurons to different stimuli. Unfortunately, this is not the case. Neurons exhibit
noise in the form of stimulus-independent fluctuations, and, most problematic of all, this noise is
correlated between neurons [12].

When attending to one of multiple competing stimuli, the responses of the most informative
neurons (those with preferred feature spaces that best represent the attended stimulus) will
compete with responses from less informative neurons against a background of shared
uncertainty. While selectively biasing the responses of the most informative neurons over
these competing responses [13], the brain also requires amechanism that compensates for the
underlying noise. Below we describe evidence linking this mechanism to three neural signa-
tures and a single core computation.

Selective Attention and Noise in the Sensory Cortices
One way to enhance the response to a selected stimulus is simply to increase the signal of the
neurons that are most informative of the stimulus. This is accomplished by increasing the spike
rate of neurons whose feature preferences best match the stimulus [3,14]. This form of neural
modulation is one of the most widely studied properties of directed visual attention [2,4,6,15].
Consider the activity of an individual neuron when its preferred feature is either inside or outside
the focus of attention. In the experiment depicted in Figure 1A, for instance, the focus of
attention of the monkey is directed to either of the two simultaneously presented stimuli in left
and right visual hemifields, while recordings are acquired from two visual cortical neurons
2 , Month Year, Vol. xx, No. yy
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Figure 1. Directed Visual Attention Alters Signal-to-Noise Ratio (SNR) and Noise Correlation of Population Neural Response. (A) Macaques performed
an orientation-change detection task. An example target stimulus is displayed. Spatial attention wasmanipulated by cuing different target locations. Monkeys fixated on
the upper central black dot. The locus of covert attention is depicted by the blue circle (not visible). The receptive field locations of two neurons are depicted by the black
circles (not visible). (B) Single-unit recordings revealed that when attention was directed to the preferred location of a neuron (black lines), firing rates (signal) increased,
and (C) trial-to-trial variability (noise) decreased relative to inattention (gray lines). The Fano factor is the variance of the spike counts divided by their mean. Attention-
driven decreases in Fano factor persisted even when controlling for differences in the mean of the spike counts on different trials. (D) For pairs of neurons with
overlapping receptive fields within the same hemisphere, attention decreased noise correlation (unbroken black line) relative to inattention (gray line). Pairs of neurons in
the opposite hemisphere (broken black line) exhibited values of rnoise close to zero [385_TD$DIFF]. (A) Adapted, with permission, from [34]. (B–D) Adapted, with permission, from [17].
preferring either left or right hemifield locations. Under such circumstances, attention to the
preferred feature of a neuron (e.g., right hemifield location) increases its mean firing rate on a
given trial compared to inattention (Figure 1B). This feature-similarity gain mechanism [3]
amplifies the responsiveness of neurons that are most informative of the stimulus, and thus
the stimulus representation.

However, by itself, an attention-driven increase in firing rate for an individual neuron is only
informative if it is also reliable. If the spike count of a neuron to the same stimulus varies widely
from one trial to the next relative to its mean response over trials – producing a high Fano
factor – we will be less certain of what stimulus occurred on any given trial. In addition to its
effect on spike rates, attention also directly alters the variability of neuronal firing rates from trial
to trial. These effects on variance are not simply a byproduct of coincidental changes in firing
rate. By isolating neurons that exhibit negligible change in their firing rate before stimulus onset
versus after stimulus onset, or during attention versus inattention, researchers have demon-
strated that reductions in Fano factor persist even in these ‘mean-matched’ neurons [16–18].
Across trials, this joint influence of attention on firing rate and trial-to-trial variability improves the
signal-to-noise ratio (SNR) of the response output of the neuron (Figure 1B,C).

Despite the influence of attention on SNR, correlated variability remains as possibly the main
limiting factor on how accurately responses in a neural population reflect a specific stimulus.
Even if an individual neuron exhibits low levels of trial-to-trial variability, correlations in the
stimulus-independent spiking activity between neurons can lead to major distortions in the
population-averaged responses to a stimulus. Unlike private variability, or neuronal noise that is
independent among neurons, correlated variability cannot be averaged out from population
neuronal responses. These noise correlations, or rnoise, are typically small, positive, and
strongest among neurons closely situated to one another and with similar feature preferences,
in other words they exhibit a topographic organization typical of sensory tuning [19,20].

How does attention compensate for correlated variability? In recent multi-electrode electro-
physiology work [17,19,21,22] a novel mechanistic basis of attention has emerged which may
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provide an answer to this question. In addition to improving the SNR of individual neurons,
attention alters the structure of noise correlation in neuronal populations (Figure 1D). From an
information processing perspective, this finding has enormous implications because noise
correlations can have a large influence on population sensitivity – the amount of information
carried by a population neural code [12]. Decoding techniques such as linear classifiers can
be used to estimate the influence of noise correlations on population sensitivity. A linear
classifier quantifies the discriminability between neuronal responses to two different types
of stimulus, for example, different orientations. If noise correlations in the data reduce discrimi-
nability – in other words classification performance goes down – we can infer that they
adversely influence population sensitivity. Indeed, for populations of neurons, computational
modeling and electrophysiology work indicates that attention-driven changes in noise corre-
lations can potentially exert large influences on population sensitivity [12,23], although this
remains an active area of study and debate [24–26].

These discoveries reveal potent mechanisms of attention expressed not only in the SNR of the
response patterns of individual neurons but also in the correlated variability among populations
of neurons with similar feature preferences. Do these three neural signatures reflect coinciden-
tal mechanisms or a single core computation? In the next section we discuss recent combined
computational and electrophysiology work indicating that normalization provides a candidate
explanatory model for the effects of attention on firing rate, rate variability, and correlated
variability.

A Canonical Computation for Stimulus Interaction and Noise Reduction
Normalization of neural responses is a canonical cortical computation that is used to model
phenomena ranging from responses to light in the retina, to stimulus competition in the primary
visual cortex, to the effects of attention in multiple areas of the visual hierarchy [27]. In
normalization models, the activity of a given neuron is scaled by net activity across a larger,
surrounding pool. For example, if neurons within the pool are mutually inhibitory, then the
activity of any given neuron is forced down as total activity goes up. In recent years, increasing
evidence has shown that attention can be well understood as a modulation of intrinsic cortical
normalization [28,29].

What normalization means is that the response output of a single neuron is not simply
determined by the match between its preferred feature space and the excitatory input from
a particular stimulus. In our natural environments, multitudes of concurrent stimuli compete for
sensory access. To accurately model the response of any given neuron to a stimulus in its
receptive field, we must also take into account potential normalization, or suppressive effects,
from concurrent stimuli. Consider two neuronal populations A and B (Figure 2), and, for
simplicity, limit the members of each population to two neurons (A1 and A2, B1 and B2).
The neurons of populations A and B prefer partially overlapping feature spaces. This overlap is
evident in the overlap between their tuning curves to orientation stimuli in Figure 2A and
overlapping receptive field locations in Figure 2B. Populations A and B are also mutually
suppressive: stimulus-driven excitatory input (E) of one population will induce suppressive input
(S) to the other (Figure 2C,D).

When both the preferred and non-preferred stimulus of a given neuron are presented inside its
receptive field (Figure 2E), experimental observations reveal that itsmean response output does
not reflect the summation of the excitatory input from each stimulus [28,30]. Instead, the mean
response of a neuron is suppressed compared to instances in which its preferred stimulus is
presented alone (Figure 2C,D). Essentially, by its combination of suppressive E and S input,
4 , Month Year, Vol. xx, No. yy
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Figure 2. Interactions between Normalization and Visual Attention. (A) Two
hypothetical visual cortical neurons A (blue) and B (purple), each with feature prefer-
ences for different orientations (y axes, firing rate; x axes, orientations in degrees; insets
are example optimal stimuli). The response distribution of each neuron for a range of
orientations is plotted as a hypothetical tuning curve. Their tuning curves overlap,
indicating that they have a signal correlation (rsignal) greater than zero. (B) The receptive
fields of neurons A (blue) and B (purple) also overlap at similar visual field locations
relative to fixation (central dot). Overt attention is directed to fixation. (C–F) (Top panels)
Repetitions of stimulus configurations with an unattended 30� orientation (C), an
unattended 45� orientation (D), unattended concurrent orientations (E), and covertly
attended 30� orientation (F). In each case, stimuli are depicted from the perspective of
the receptive fields for neurons A (blue) and B (purple). (C–F) (Bottom panels) Two
hypothetical neuronal populations, each consisting of two neurons with feature pre-
ferences identical to either neurons A (A1,A2, blue) or neurons B (B1,B2, purple).
Normalization determines the balance between excitatory E (arrows) and suppressiveS
(terminals) modulation, generating the observed tuning curves in (A). This balance is
expressed by three population-response patterns: mean firing rates over trials (blue
and purple circles, left-hand y axes are spikes per second), trial-to-trial firing rate
variability (bars are SD), and correlated variability between neurons (blue and purple
crosses, right-hand y axes are rnoise). (C,D) The balance between E and S input is offset
because the stimulus better matches the feature preferences of one population over
the other. In the better-matched population, mean firing rates increase, trial-to-trial
variability decreases, and rnoise decreases. The opposite is true for the poorer-matched
population. (E) Both E and S inputs are balanced by concurrent unattended presenta-
tion of the preferred and non-preferred stimuli of a population. This induces a com-
promise between the two populations whereby mean firing rates, trial-to-trial variability,
and rnoise all exhibit an intermediate change in profile. (F) The identical stimulus
configuration in (E), but with attention covertly directed to the 30� orientation (the
‘attentional field' is depicted by a black circle). The balance between E and S inputs is
offset by attention, modeled as a multiplicative gain on its E inputs (Eb). The circuit
approaches the state it would adopt for the attended stimulus presented alone.
each stimulus tends to drive activity to the value it would have if that stimulus were presented
alone. With two simultaneous stimuli, the resulting activity level is a compromise. These findings
are well modeled by dividing the excitatory inputs E of a neuron by the suppressive input S, with
the latter being computed as the sum of activity across all neurons within a surrounding
‘suppressive field’ [31–33]. This divisive normalization provides a simple and powerful
computational basis for predicting neuronal firing rates under diverse naturalistic sensory
conditions [27].

Normalization models also have implications for trial-to-trial variability and correlated variability
of population neuronal responses. Returning to our example in Figure 2, consider the influence
, Month Year, Vol. xx, No. yy 5



1TICS 1774 No. of Pages 16
of reciprocal S modulation between populations A and B. The trial-to-trial variability of the
responses of an individual neuron to a stimulus is influenced by the variability of its suppressive
input. When the variability of S is decreased over repetitions of a stimulus (e.g., population A in
Figure 2C), so too is the variability in modulation of the responses of a given neuron to that
stimulus [21]. Recent combined computational and electrophysiological work also indicates
that S inputs are a source of correlated noise [34]. Based on these analyses,S inputs originating
from one population (A) are shared by multiple neurons in another population (e.g., B1 and B2).
A stimulus-driven increase in S input from population A to B (Figure 2C) will drive up rnoise
between neurons B1 and B2. The decrease in reciprocal S inputs to population A, conversely,
drives down rnoise in population A.

Computationally, divisive normalization accommodates attention as a single free parameter
(often denoted by the symbol b) which acts as a multiplicative gain on E inputs. Figure 2F
depicts this interaction between directed attention b and the balance between E and S inputs
that determine normalization. Under visual stimulation conditions identical to Figure 2E,
directed attention to one of the two stimuli induces a multiplicative gain on its excitatory inputs
Eb. This multiplicative gain amplifies the effect of the attended input on network activity,
including both its excitatory and suppressive effects, driving the network towards the state
it would adopt for this input occurring alone [28,29]. As is also apparent between Figure 2F and
2C, reductions in the noise component of population neuronal responses – trial-to-trial
variability and correlated variability – owing to modulation by either a stimulus or attention
can be modeled in the same way: an offset in the balance of reciprocal Smodulation between
populations. A second noise-reducing influence might originate from the biasing signal atten-
tion b itself, which in addition to amplifying E inputs might also stabilize their shared fluctuations,
thereby further decreasing correlated variability and trial-to-trial variability in the modulated
population [21,35–38].

The examples in Figure 2 highlight two important properties of normalization. First, normaliza-
tion in itself is not dependent on directed attention. The E and S inputs of individual visual
cortical neurons will be influenced by any stimuli in their receptive and suppressive fields,
inducing normalization even when those stimuli are outside the focus of attention. Second,
normalization provides the underlying computational strategy for directed attention. As a
biasing signal, attention optimizes population coding in large part through modulation of
the E and S inputs in competing neuronal populations.

A third important property of normalization is that it is likely to be a canonical computation of
cortical circuits that is embedded throughout the cortical hierarchy [27]. Normalization is
relatively straightforward to model in striate and extrastriate cortices, where multi-electrode
array data can be used to infer the feature preferences of multiple different neurons. As we
move higher in the cortical hierarchy, however, the preferred feature spaces of neurons become
more difficult to infer. This poses a challenge to modeling the E and S inputs for a given neuron.
Do the inputs arise from sensory stimuli, cognitive operations, or some mixture of both?

Selective Attention and Noise in the Association Cortices
Like neurons in the sensory cortex, neurons in higher-order association cortex have feature
preferences that lie alongmultiple intersecting dimensions of a feature space [39]. Each intersec-
tion can be construed as the integration of values along each dimension. In the primary visual
cortex, this intersection might be a particular orientation given a specific spatial frequency and a
particular motion direction [11]. As we move up the hierarchy, this intersection will be defined by
increasing numbers of feature dimensions, resulting in exceptionally high-dimensional feature
6 , Month Year, Vol. xx, No. yy
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spaces in areas such as the frontal cortex. What gives rise to this increase in dimensionality? The
answermost likely rests on the number of connections that neurons receive at different stages of
the cortical hierarchy,which is substantially higher andmore diverse in theprefrontal compared to
sensory cortices [40]. If a neuron integrates a higher number of short- and long-range inputs from
different brain areas, its preferred feature space will be higher-dimensional.

Like populations of neurons in the sensory cortex, populations of neurons in higher-order
association cortex have diverse and overlapping preferred features, albeit in a higher-dimen-
sional space. To bias competition in association cortex, attention is therefore faced with the
same noisy functional architecture as in the sensory cortex. This would imply that directed
attention might also evoke changes in firing rate, rate variability, and correlated variability to
optimize population coding in association cortex. Monkey electrophysiology work supports this
prediction. When a particular stimulus feature is held in working memory, the SNR of individual
lateral prefrontal neurons improves – firing rate increases, while trial-to-trial variability decreases
[41,42]. Similar patterns are observed in other areas of higher-order cortex such as posterior
parietal cortex [43] and frontal eye fields [44]. Multi-electrode studies have also demonstrated
that working memory maintenance alters correlated variability between lateral prefrontal
neurons [45–47]. As in the sensory cortex during visual attention, correlated variability can
influence population neural coding. Removing noise correlation between prefrontal cortex
neurons improves decoding performance for different stimuli held in working memory [45,47].

Does normalization account for the observed changes in firing rate, rate variability, and
correlated variability in association cortex? If so, how do we estimate the E and S inputs
for neurons in association cortex? Emerging electrophysiology work has provided some clues.
Among multisensory neurons responsive to both visual and vestibular input, Ohshiro and
colleagues have shown that a non-preferred input in one modality can suppress the response
of a neuron when paired with a preferred input in the other modality [39,48]. This form of cross-
modal suppression is consistent with normalization at the level of multisensory integration
(Figure 3). A multisensory neuron might receive maximal excitatory input from a particular
Normaliza on

Normaliza on

Normaliza on

Mul sensory
layer

Sensory layer
for modality 1

Sensory layer
for modality 2

Figure 3. [387_TD$DIFF]A Schematic of Hierarchi-
cal Integration, Attention, and Nor-
malization. At each level of the cortical
hierarchy, proceeding from the two dis-
tinct unisensory layers (visual or vestibu-
lar) to the multisensory layer (visual and
vestibular), normalization represents the
computational strategy for determining
neuronal responses from the E and S
inputs of competing populations. In the
multisensory layer, neurons respond to a
particular conjunction of visual and ves-
tibular cues. Populations responsive to
different conjunctions are mutually sup-
pressive, and attention biases normaliza-
tion in favor of neurons representing the
selected conjunction (central node). In the
unisensory layers, this strategy is
repeated for the population best repre-
senting either the attended visual or ves-
tibular feature (black circles), and those of
mutually suppressive populations with
overlapping feature preferences (white
circles). Adapted, with permission, from
[48].
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conjunction of visual and vestibular features, which is then normalized with respect to the
mutually suppressive input from other multisensory neurons preferring distinct but overlapping
visual–vestibular feature conjunctions. Lending further support to the hierarchical integration of
normalization, other electrophysiology work has shown that normalization can account for both
stimulus- and attention-modulated changes in correlated variability not only between neurons
within the same area but also between neurons in different brain areas, for example, visual
cortical V1 and MT [49–51].

Moving to the highest levels of integration in the hierarchy, such as the prefrontal cortex, our
ability to accurately model the E and S inputs that determine normalization and its expression in
population neuronal activity becomes increasingly constrained by our ability to accurately infer
the high-dimensional feature preferences of individual neurons. For instance, prefrontal neu-
rons might exhibit mixed selectivity for conjunctions of external stimuli and internal task states –
if the stimulus is X, and the rule is Y, then respond Z [52–54]. Nevertheless, the challenge of
accurately characterizing high-dimensional feature preferences –where the E and S inputs for a
given neuron might be defined by the integration of multiple sensory modalities and internal
states arising from ongoing cognitive operations and memory – represents a necessary first
step to accurately predicting how directed attention alters firing rate, rate variability, and
correlated variability in these regions.

Extrapolating from the framework depicted in Figure 3, attention is unified by a common
computation across the cortical hierarchy. When biased competition establishes a winning cell
population at a higher level of integration, for example, in the prefrontal cortex, this in turn may
give competitive support to diverse input neurons at lower levels of integration [13,55–57].
Normalization optimizes coding for the relevant signal, at each level of integration, by biasing the
competitive interactions among local populations and reducing noise. Accordingly, a brain
system is required that can reach multiple areas of the cortex to modulate normalization
simultaneously, selectively, and at multiple different timescales. In the next section we discuss
recent work suggesting that a key player may be the cholinergic basal forebrain system.

The Cholinergic Basal Forebrain Is a Unitary Biological System of Attention
Since the discovery of acetylcholine by Sir Henry Dale in 1914, our understanding of the role of
this biochemical in the central nervous system has gone through several major revisions. Once
thought to be a sluggish and diffusely acting neuromodulator involved in controlling general
states of arousal or alertness, recent animal research has shown that ACh can also act as a
neurotransmitter, rapidly signaling at the synapse of individual neurons [58–60]. One of the
most exciting developments supporting this changing view indicates that cholinergic drive, like
directed attention, can rapidly and reversibly alter the firing rate, rate variability, and correlated
variability of cortical neurons.

Much of this evidence comes from rodent models in which optogenetic or electrical stimulation
is applied to cholinergic neurons within the basal forebrain – which contains all the cortically
projecting cholinergic neurons of the brain [61] – to experimentally control endogenous release
of ACh onto distal cortical neurons [62–65]. Electrophysiological recordings of visual cortical
neurons during presentations of natural visual stimuli reveal that stimulation of cholinergic drive
alters the firing rate, rate variability, and correlated variability of population neural responses in a
manner that closely mimics attention [63,64]. Strikingly, optogenetic inactivation of cholinergic
input reverses these attention-like patterns in the population response [64] (Figure 4). These
effects are unlikely to be due to changes in the general state of arousal. Concurrent measures of
running speed taken during the brief optogenetic activation and inactivation periods remain
8 , Month Year, Vol. xx, No. yy



1TICS 1774 No. of Pages 16

FF
 B

F 
on

FF
 B

F 
off

FF control

FF control

Frequency (Hz)

Frequency (Hz)

Co
he

re
nc

e
Co

he
re

nc
e

Contrast (%)

Contrast (%)

FR
 (H

z)
FR

 (H
z)

20

20

40

40

100

100

5

5

10

10

15

15

Control

Control

Control

Control

BF on

BF off

BF off

BF on

2

2

2

2

1

1

1

1

0.1

0.2

0.2

0.4

0
1

1

10

10 100

100

V1
recording473 nm

to BF

1004020
Water

Visual
sƟmulus

473 nm
to BF
or V1

(A) (B) (C) (D)

Figure 4. Rapid and Reversible Cholinergic Modulation of Signal-to-Noise Ratio (SNR) and Synchrony. (A)Mice vieweddrifting gratings of varying contrast
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mouse basal forebrain: optogenetic activation of cholinergic basal forebrain (BF) neurons, optogenetic inactivation of cholinergic BF neurons, and control stimulation.
Multiunit electrophysiology recordings were acquired in visual cortical area V1. (B–D) Effects of cholinergic drive on mean firing rate (FR) over trials (B), trial-to-trial
variability (C), and correlated variability indexed from cortical synchrony of local field potentials (D). For parallel comparison with attention-modulated effects, consult
Figure 1B–D. (B) For all grating contrasts, optogenetic activation increased the mean firing rate of single units in V1 relative to control stimulation. Optogenetic
inactivation decreased the mean firing rate relative to control. The same effects were observed for natural scenes. (C) Trial-to-trial variability (FF, Fano factor) in the
responses of individual V1 neuron to natural scenes (open gray circles). Optogenetic activation (y axis) decreased variability in V1 over trials relative to control stimulation
(x axis). Optogenetic inactivation increased the variability of V1 neurons over trials relative to control. The same effects were observed for gratings. (D) Intratrial
coherence (y axis) was computed between the responses of single V1 neurons against the population average during natural movies. Low-frequency (x axis) coherence
between neurons decreased under optogenetic activation compared to control stimulation. Optogenetic inactivation increased low-frequency coherence between
neurons compared to control. The same effects were observed for gratings. For both plots, dotted lines represent baseline coherence levels estimated from random
trial shuffles. Adapted, with permission, from [64].
unaffected. As in monkey electrophysiology work on directed visual attention [66], the influence
of cholinergic drive on noise correlation also appears to depend on the similarity of the feature
preferences of a neuron (their signal correlation) [67]. The largest changes in noise correlation
are observed among neurons that share similar feature preferences and, probably, suppressive
fields [34] (Figure 5).

How do these cholinergically driven changes in population neuronal responses affect popula-
tion neuronal coding? Like directed attention, stimulation of ACh release in the visual cortex
improves the amount of stimulus information carried in the population code, as indexed by
decoding performance for different types of visual stimuli from population neural responses
[63,67]. Cholinergic drive of cortical population responses may thus constitute a key biochemi-
cal basis of the rapid and spatially localized population coding dynamics of attention. Another
major implication of the rodent research is that, like attention, cortical release of AChmodulates
normalization. Below we discuss several avenues of research that motivate further exploration
of this hypothesis.

First, if ACh modulates normalization, then its influence on this canonical computation should
not be restricted to the primary sensory cortex. Demonstrations of cholinergically driven
changes in SNR and noise correlation elsewhere in the cortical hierarchy, and under a variety
, Month Year, Vol. xx, No. yy 9
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Figure 5. Relationship between Signal Correlation (x Axes) and Noise Correlation (y Axes) in the Visual Cortex. [390_TD$DIFF] Neurons preferring the same stimulus
features (signal correlation r > 0) [391_TD$DIFF]exhibit the most shared noise. The effects of directed visuospatial attention (A) and optogenetically controlled release of cortical
acetylcholine (ACh) (B) both shift the magnitude of this correlation downward. Hence, attention and cholinergic drive both exert the strongest decrease in noise
correlation among neurons which share similar feature preferences. (A) and (B) adapted, with permission, from [66] and [67], respectively.
of task conditions, are still needed. Nevertheless, recent work using state-of-the-art electro-
chemical biosensors implanted in the prefrontal cortex, which are sensitive to millisecond-scale
changes in synaptic ACh, have shown that phasic changes in ACh and firing rate are linked to
specific behaviorally relevant task events such as cue detection [68,69]. As this exciting line of
research evolves to include multi-electrode arrays, more directed experiments testing the links
among cholinergic drive, population neuronal response patterns, and normalization across
different areas of cortex will come into reach.

Second, if directed attention coordinates normalization through hierarchical integration, then
the cholinergic system should mirror this functional architecture. However, this proposal rests
on major assumptions about the form and function of the cholinergic system itself, which we
discuss in the remainder of this section.

Hierarchical integration implies that populations of neurons at different levels of integration are
functionally connected. If the cortical cholinergic projections modulate normalization in this
scheme, they should be organized in a way that allows simultaneous modulation of inter-
connected cortical areas. Emerging evidence from studies using simultaneous retrograde cell
labeling of cholinergic neurons from different areas of cortex strongly supports such an
organization. The cortical cholinergic projections of the basal forebrain exhibit a complex
topography characterized by pools of neurons with either segregated or overlapping cortical
projections, and where the degree of overlap appears to depend on the interconnectivity
among the cortical regions to which they project [70,71]. Similarly, the axonal branches
(collaterals) emerging from individual cholinergic neurons also appear to target functionally
interconnected cortical areas [72–74]. At multiple spatial scales, the cholinergic projections are
well organized to simultaneously modulate hierarchically integrated cortical areas.

Despite an architectural plan consistent with hierarchical integration, the cholinergic projections
must also be endowedwith amode of neurotransmission to rapidly and reversibly modulate the
balance between E and S inputs that determine normalization at each level. Here too emerging
10 , Month Year, Vol. xx, No. yy
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evidence supports the changing view that, in addition to its slower andmore diffuse effects [75–
77], cortical release of ACh can resemble ‘wired’ synaptic transmission [58,59]. Optogenetic
stimulation of cholinergic basal forebrain projections rapidly alters the local spatiotemporal
pattern of inhibition in three types of GABAergic interneurons: parvalbumin (PV)-, somatostatin
(SOM)-, and vasoactive intestinal peptide (VIP)-expressing cells [62,78–85]. These three
interneuron subtypes are thought to form a canonical cortical circuit [82–85]. A core property
of this circuit is that it allows both inhibitory and disinhibitory signaling in populations of
excitatory glutamatergic neurons (Figure 6A). Moreover, recent optogenetics work [81] explor-
ing the stimulus and task-dependent response profiles in this circuit has revealed that, like
excitatory neurons, individual interneurons of each subtype also exhibit a diversity of feature
preferences (Figure 6B). At the population level, simultaneous cholinergic modulation of
multiple interneurons can therefore evoke diverse stimulus- and task-dependent responses
which, depending on the subtype, are either inhibitory or disinhibitory. This diversity of cortical
inputs, in turn, leads to a diversity of excitatory cortical outputs (Figure 6C).

Why might cholinergic input recruit the multiple parallel signaling pathways of this cortical
circuit? The emerging evidence indicates that parallel processing within this circuit enables it to
generate different responses to the same stimuli depending on context [81]. Returning to the
example in Figure 2F, the relevance of these findings to attention becomes readily apparent.
Consider a slightly different scenario where covert attention must be shifted from the 30� to the
45� orientation stimulus. The E inputs for the two stimuli must flip in their weighting, along with
resulting changes in S interactions, effectively reversing modulation of SNR and correlated
variability within each population, even though the external stimuli remain constant. To accom-
plish this context-dependent modulation, some component of the circuit must maintain the
current task context (attend 30�), and another component must convey rapid and reversible
changes in context (shift attention to 45�). At the circuit level, this might be achieved by means
ACh input

ACh inputACh input

PV

PV

PV

SOM
SOM SOM

VIP

VIP
VIP

Exc

Exc
1.0

–1.0

(A) (B)

M
od

ul
a

on

Popula on B

Popula on A

(C)

Figure 6. A Cell Type-Specific Model of a Cholinergically Modulated Cortical Microcircuit Underlying
Normalization. (A) Cortical release of acetylcholine (ACh) due to stimulation of basal forebrain cholinergic neurons
primarily affects three types of inhibitory interneurons: parvalbumin (PV)-, somatostatin (SOM)-, and vasoactive intestinal
peptide (VIP)-expressing cells. Cholinergically driven changes in these inhibitory interneurons explain both response
facilitation and response suppression of excitatory pyramidal neurons (Exc). For instance, PV and SOM interneurons
appear to directly inhibit Exc neurons (unbroken red arrows), whereas VIP interneurons disinhibit Exc neurons (broken red
arrows). (B) For individual cells of each subtype of inhibitory interneuron (blue and purple units), the strength of their
inhibitory or disinhibitory drive on Exc populations also depends on their distinct feature preferences; for example,
interneurons might prefer 30� or 45� orientations similarly to populations A (blue) or B (purple) from Figure 2. (C) A
multiunit model of the microcircuit reveals that these diverse inhibitory inputs can, in turn, lead to diverse excitatory outputs
(gray box) for Exc populations with distinct feature preferences A and B. Hence, parallel processing of cholinergic
modulation by diverse inhibitory inputs enables the microcircuit to generate different responses to the same stimuli
depending on the context, for example, shifting attention between two competing orientations (Figure 2F). Cholinergic
modulation of this cortical microcircuit might therefore constitute a key interface between attention and normalization.
Adapted, with permission, from [81].
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Outstanding Questions
Canwemodel normalization in circum-
stanceswhere the distinct feature pref-
erences of neuronal populations are
difficult to infer, for example, at high
levels of integration such as the frontal
cortex? If so, how?

Are the dynamic changes in noise cor-
relation induced by attention detect-
able with non-invasive brain imaging
techniques such as fMRI and scalp
EEG?

What are the temporal and spatial
scales at which cortical release of
ACh modulates population coding
during tasks requiring ‘top-down’
directed attention?

How does the spatiotemporal scale of
cholinergic neuromodulation relate to
the capacity limits of attention?

For diseases in which pathophysiology
targets the cholinergic basal forebrain
neurons, can chronic hyper- or hypo-
cholinergic modulation predict reliable
changes in population coding?
of parallel adjustment to the inhibitory and disinhibitory inputs targeting both populations A and
B. Parallel cholinergic modulation of this cell type-specific cortical circuit (Figure 6C) might
therefore constitute a key biophysical basis underlying the computational implementation of
attention and normalization (Figure 2F).

Our understanding of this cortical circuit is far from complete. Many additional cholinergic
signaling pathways may exist. For instance, optogenetic stimulation of basal forebrain cholin-
ergic neurons has been found to modulate the responses of individual orientation-tuned V1
neurons to specific orientation stimuli via a non-neuronal signaling pathway involving astrocytes
[86]. In another optogenetics study, the cholinergic basal forebrain neurons themselves were
shown to be capable of manufacturing, transporting, and phasically coreleasing both ACh and
GABA [87]. There are also diverse cholinergic receptors in the cortex, belonging to either
muscarinic or nicotinic subtypes, whose distinct roles in this cortical circuit are not well
characterized. Finally, more work will be necessary to determine whether the observed effects
of cholinergic drive on population neuronal responses are uniform across cortical layers or
exhibit layer-specific differences [88–90]. Although beyond the scope of the current review,
finer-grained elucidation of this cortical circuit will likely provide further insights at the direct
interface between neurobiology and cognition.

In sum, the cholinergic basal forebrain projection system is exquisitely wired to coordinate
simultaneous, rapid, and reversible modulation of normalization across hierarchically integrated
cortical areas. Very few of the many overlapping electrophysiological findings observed under
either directed attention (primarily in monkeys) or cholinergic modulation (primarily in rodents)
have been evaluated systematically, although there are already several compelling examples of
interdependence between the two [91,92]. In the next section we highlight several avenues of
future research where a better understanding of this interdependence may prove extremely
fruitful.

Concluding Remarks and Future Directions
Cholinergic neurons are particularly vulnerable to age-related neurodegeneration [61,93], in
part because of their enormous axonal projections [94–98]. Longitudinal decreases in basal
forebrain gray matter volume are observed among older adults with cerebrospinal fluid
biomarkers of Alzheimer’s disease (AD) but no apparent deficits in short-term memory or
entorhinal cortical degeneration [99], suggesting that the cholinergic system is among the
earliest affected in the disease progression. However, is the cholinergic lesion in preclinical AD
indeed ‘clinically silent’? In preclinical stages of AD, the loss of cortically projecting cholinergic
inputs may reduce the availability of ACh to modulate normalization in the cortex. With reduced
capacity to bias competing neural populations and increased noise, one potential outcome
would be a greater susceptibility to encoding errors and distraction during sensory processing.
Many studies of visual attention in older adult samples report exactly this pattern [100–103].
Such a deficit might predispose gradual degradation in the fidelity of memory encoding and,
ultimately, short-term memory retrieval [100,101,104]. Precisely how nascent cholinergic
deafferentation in preclinical stages of AD affects the cortical cholinergic microcircuit, normali-
zation, and population coding is unknown.

Cholinergic dysfunction is not limited to neurodegenerative diseases of aging. Psychiatric
conditions including anxiety, depression, and post-traumatic stress disorder have been linked
to abnormal cholinergic signaling [105–110]. Indeed, a growing body of cross-species trans-
lational psychiatry research indicates that, in contrast to AD, a common mechanism of
dysfunction across these disorders is persistent hyperactivity of cortical ACh. Of particular
12 , Month Year, Vol. xx, No. yy
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interest are the direct cholinergic projections from the septal nucleus of the basal forebrain to
the hippocampus – the septohippocampal pathway – which generate a range of stable
oscillatory network states [111–113] that are important for maintaining cognitive functions
such as attention [114]. Both pharmacological blockade and genetic knockdown of the
acetylcholinesterase enzyme – which breaks down ACh in the synapse upon neurotransmis-
sion [59] – yield hyperactive cholinergic signaling in the mouse hippocampus as well as anxiety-
and depression-like behaviors [115].

One possibility is that the hippocampal cholinergic hypersensitivity observed in anxiety,
depression, and post-traumatic stress disorder arises from, or interacts with, deficient inhibitory
function of GABAergic interneurons. Muted GABAergic tone local to the hippocampus is also
well characterized in each of these disorders, as well as in schizophrenia [116–128]. Moreover,
in cognitively normal populations, lower concentrations of hippocampal GABA are associated
with increased susceptibility to intrusive thought [129]. An imbalance between the inhibitory and
disinhibitory GABAergic drives of hippocampal interneurons, for example, in the three classes
of interneurons described in Figure 6, might therefore disrupt normalization of their responses,
increasing susceptibility to runaway excitation. Consequently, at the population level, this
imbalance might lower the threshold of activation for unwanted or arbitrary memories and
thoughts, potentiating a constellation of disruptions to attention such as flash-backs, rumina-
tion, persistent worry, and hallucination.

In the preceding sections we proposed that both directed attention and ACh can modulate
normalization to optimize population coding throughout the cortical mantle. These lines of
evidence raise many questions about the ‘sameness’ of attentional and cholinergic function. If
directed attention manifests from biased competition across levels of integration in the cortical
hierarchy, does ACh influence the ‘directedness’ of this hierarchical integration? Attention is a
fast and flexible resource; if cholinergic drive is crucial, mechanisms must exist for routing its
effects to highly specific neural populations, perhaps through interaction with corticocortical
‘control’ inputs. At the same time, attention is also a capacity-limited resource [130]. We can
process only so much information at any moment; one possibility is that the cholinergic system
also constrains attention, to some degree, by its spatiotemporal upper bound. While the
evidence discussed in this review hints at the plausibility of ACh as a key neurobiological
basis of attention, more work will be necessary to clarify precisely how and when attention and
ACh interact to improve population coding (see Outstanding Questions). Finally, if normalization
is a canonical cortical computation, then dysfunction in its cortical microcircuitry will have
severe widespread consequences for population coding. Multiple diseases of the central
nervous system characterized by pathophysiology in the cholinergic system may thus share
abnormal population coding – and specific disturbances of attention – as a common feature.
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